Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

lt(0, s(X)) → true
lt(s(X), 0) → false
lt(s(X), s(Y)) → lt(X, Y)
append(nil, Y) → Y
append(add(N, X), Y) → add(N, append(X, Y))
split(N, nil) → pair(nil, nil)
split(N, add(M, Y)) → f_1(split(N, Y), N, M, Y)
f_1(pair(X, Z), N, M, Y) → f_2(lt(N, M), N, M, Y, X, Z)
f_2(true, N, M, Y, X, Z) → pair(X, add(M, Z))
f_2(false, N, M, Y, X, Z) → pair(add(M, X), Z)
qsort(nil) → nil
qsort(add(N, X)) → f_3(split(N, X), N, X)
f_3(pair(Y, Z), N, X) → append(qsort(Y), add(X, qsort(Z)))

Q is empty.


QTRS
  ↳ Overlay + Local Confluence

Q restricted rewrite system:
The TRS R consists of the following rules:

lt(0, s(X)) → true
lt(s(X), 0) → false
lt(s(X), s(Y)) → lt(X, Y)
append(nil, Y) → Y
append(add(N, X), Y) → add(N, append(X, Y))
split(N, nil) → pair(nil, nil)
split(N, add(M, Y)) → f_1(split(N, Y), N, M, Y)
f_1(pair(X, Z), N, M, Y) → f_2(lt(N, M), N, M, Y, X, Z)
f_2(true, N, M, Y, X, Z) → pair(X, add(M, Z))
f_2(false, N, M, Y, X, Z) → pair(add(M, X), Z)
qsort(nil) → nil
qsort(add(N, X)) → f_3(split(N, X), N, X)
f_3(pair(Y, Z), N, X) → append(qsort(Y), add(X, qsort(Z)))

Q is empty.

The TRS is overlay and locally confluent. By [19] we can switch to innermost.

↳ QTRS
  ↳ Overlay + Local Confluence
QTRS
      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

lt(0, s(X)) → true
lt(s(X), 0) → false
lt(s(X), s(Y)) → lt(X, Y)
append(nil, Y) → Y
append(add(N, X), Y) → add(N, append(X, Y))
split(N, nil) → pair(nil, nil)
split(N, add(M, Y)) → f_1(split(N, Y), N, M, Y)
f_1(pair(X, Z), N, M, Y) → f_2(lt(N, M), N, M, Y, X, Z)
f_2(true, N, M, Y, X, Z) → pair(X, add(M, Z))
f_2(false, N, M, Y, X, Z) → pair(add(M, X), Z)
qsort(nil) → nil
qsort(add(N, X)) → f_3(split(N, X), N, X)
f_3(pair(Y, Z), N, X) → append(qsort(Y), add(X, qsort(Z)))

The set Q consists of the following terms:

lt(0, s(x0))
lt(s(x0), 0)
lt(s(x0), s(x1))
append(nil, x0)
append(add(x0, x1), x2)
split(x0, nil)
split(x0, add(x1, x2))
f_1(pair(x0, x1), x2, x3, x4)
f_2(true, x0, x1, x2, x3, x4)
f_2(false, x0, x1, x2, x3, x4)
qsort(nil)
qsort(add(x0, x1))
f_3(pair(x0, x1), x2, x3)


Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

QSORT(add(N, X)) → SPLIT(N, X)
LT(s(X), s(Y)) → LT(X, Y)
F_3(pair(Y, Z), N, X) → QSORT(Y)
F_3(pair(Y, Z), N, X) → APPEND(qsort(Y), add(X, qsort(Z)))
F_1(pair(X, Z), N, M, Y) → LT(N, M)
F_3(pair(Y, Z), N, X) → QSORT(Z)
F_1(pair(X, Z), N, M, Y) → F_2(lt(N, M), N, M, Y, X, Z)
APPEND(add(N, X), Y) → APPEND(X, Y)
SPLIT(N, add(M, Y)) → F_1(split(N, Y), N, M, Y)
QSORT(add(N, X)) → F_3(split(N, X), N, X)
SPLIT(N, add(M, Y)) → SPLIT(N, Y)

The TRS R consists of the following rules:

lt(0, s(X)) → true
lt(s(X), 0) → false
lt(s(X), s(Y)) → lt(X, Y)
append(nil, Y) → Y
append(add(N, X), Y) → add(N, append(X, Y))
split(N, nil) → pair(nil, nil)
split(N, add(M, Y)) → f_1(split(N, Y), N, M, Y)
f_1(pair(X, Z), N, M, Y) → f_2(lt(N, M), N, M, Y, X, Z)
f_2(true, N, M, Y, X, Z) → pair(X, add(M, Z))
f_2(false, N, M, Y, X, Z) → pair(add(M, X), Z)
qsort(nil) → nil
qsort(add(N, X)) → f_3(split(N, X), N, X)
f_3(pair(Y, Z), N, X) → append(qsort(Y), add(X, qsort(Z)))

The set Q consists of the following terms:

lt(0, s(x0))
lt(s(x0), 0)
lt(s(x0), s(x1))
append(nil, x0)
append(add(x0, x1), x2)
split(x0, nil)
split(x0, add(x1, x2))
f_1(pair(x0, x1), x2, x3, x4)
f_2(true, x0, x1, x2, x3, x4)
f_2(false, x0, x1, x2, x3, x4)
qsort(nil)
qsort(add(x0, x1))
f_3(pair(x0, x1), x2, x3)

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

QSORT(add(N, X)) → SPLIT(N, X)
LT(s(X), s(Y)) → LT(X, Y)
F_3(pair(Y, Z), N, X) → QSORT(Y)
F_3(pair(Y, Z), N, X) → APPEND(qsort(Y), add(X, qsort(Z)))
F_1(pair(X, Z), N, M, Y) → LT(N, M)
F_3(pair(Y, Z), N, X) → QSORT(Z)
F_1(pair(X, Z), N, M, Y) → F_2(lt(N, M), N, M, Y, X, Z)
APPEND(add(N, X), Y) → APPEND(X, Y)
SPLIT(N, add(M, Y)) → F_1(split(N, Y), N, M, Y)
QSORT(add(N, X)) → F_3(split(N, X), N, X)
SPLIT(N, add(M, Y)) → SPLIT(N, Y)

The TRS R consists of the following rules:

lt(0, s(X)) → true
lt(s(X), 0) → false
lt(s(X), s(Y)) → lt(X, Y)
append(nil, Y) → Y
append(add(N, X), Y) → add(N, append(X, Y))
split(N, nil) → pair(nil, nil)
split(N, add(M, Y)) → f_1(split(N, Y), N, M, Y)
f_1(pair(X, Z), N, M, Y) → f_2(lt(N, M), N, M, Y, X, Z)
f_2(true, N, M, Y, X, Z) → pair(X, add(M, Z))
f_2(false, N, M, Y, X, Z) → pair(add(M, X), Z)
qsort(nil) → nil
qsort(add(N, X)) → f_3(split(N, X), N, X)
f_3(pair(Y, Z), N, X) → append(qsort(Y), add(X, qsort(Z)))

The set Q consists of the following terms:

lt(0, s(x0))
lt(s(x0), 0)
lt(s(x0), s(x1))
append(nil, x0)
append(add(x0, x1), x2)
split(x0, nil)
split(x0, add(x1, x2))
f_1(pair(x0, x1), x2, x3, x4)
f_2(true, x0, x1, x2, x3, x4)
f_2(false, x0, x1, x2, x3, x4)
qsort(nil)
qsort(add(x0, x1))
f_3(pair(x0, x1), x2, x3)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 4 SCCs with 5 less nodes.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APPEND(add(N, X), Y) → APPEND(X, Y)

The TRS R consists of the following rules:

lt(0, s(X)) → true
lt(s(X), 0) → false
lt(s(X), s(Y)) → lt(X, Y)
append(nil, Y) → Y
append(add(N, X), Y) → add(N, append(X, Y))
split(N, nil) → pair(nil, nil)
split(N, add(M, Y)) → f_1(split(N, Y), N, M, Y)
f_1(pair(X, Z), N, M, Y) → f_2(lt(N, M), N, M, Y, X, Z)
f_2(true, N, M, Y, X, Z) → pair(X, add(M, Z))
f_2(false, N, M, Y, X, Z) → pair(add(M, X), Z)
qsort(nil) → nil
qsort(add(N, X)) → f_3(split(N, X), N, X)
f_3(pair(Y, Z), N, X) → append(qsort(Y), add(X, qsort(Z)))

The set Q consists of the following terms:

lt(0, s(x0))
lt(s(x0), 0)
lt(s(x0), s(x1))
append(nil, x0)
append(add(x0, x1), x2)
split(x0, nil)
split(x0, add(x1, x2))
f_1(pair(x0, x1), x2, x3, x4)
f_2(true, x0, x1, x2, x3, x4)
f_2(false, x0, x1, x2, x3, x4)
qsort(nil)
qsort(add(x0, x1))
f_3(pair(x0, x1), x2, x3)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APPEND(add(N, X), Y) → APPEND(X, Y)

R is empty.
The set Q consists of the following terms:

lt(0, s(x0))
lt(s(x0), 0)
lt(s(x0), s(x1))
append(nil, x0)
append(add(x0, x1), x2)
split(x0, nil)
split(x0, add(x1, x2))
f_1(pair(x0, x1), x2, x3, x4)
f_2(true, x0, x1, x2, x3, x4)
f_2(false, x0, x1, x2, x3, x4)
qsort(nil)
qsort(add(x0, x1))
f_3(pair(x0, x1), x2, x3)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

lt(0, s(x0))
lt(s(x0), 0)
lt(s(x0), s(x1))
append(nil, x0)
append(add(x0, x1), x2)
split(x0, nil)
split(x0, add(x1, x2))
f_1(pair(x0, x1), x2, x3, x4)
f_2(true, x0, x1, x2, x3, x4)
f_2(false, x0, x1, x2, x3, x4)
qsort(nil)
qsort(add(x0, x1))
f_3(pair(x0, x1), x2, x3)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APPEND(add(N, X), Y) → APPEND(X, Y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LT(s(X), s(Y)) → LT(X, Y)

The TRS R consists of the following rules:

lt(0, s(X)) → true
lt(s(X), 0) → false
lt(s(X), s(Y)) → lt(X, Y)
append(nil, Y) → Y
append(add(N, X), Y) → add(N, append(X, Y))
split(N, nil) → pair(nil, nil)
split(N, add(M, Y)) → f_1(split(N, Y), N, M, Y)
f_1(pair(X, Z), N, M, Y) → f_2(lt(N, M), N, M, Y, X, Z)
f_2(true, N, M, Y, X, Z) → pair(X, add(M, Z))
f_2(false, N, M, Y, X, Z) → pair(add(M, X), Z)
qsort(nil) → nil
qsort(add(N, X)) → f_3(split(N, X), N, X)
f_3(pair(Y, Z), N, X) → append(qsort(Y), add(X, qsort(Z)))

The set Q consists of the following terms:

lt(0, s(x0))
lt(s(x0), 0)
lt(s(x0), s(x1))
append(nil, x0)
append(add(x0, x1), x2)
split(x0, nil)
split(x0, add(x1, x2))
f_1(pair(x0, x1), x2, x3, x4)
f_2(true, x0, x1, x2, x3, x4)
f_2(false, x0, x1, x2, x3, x4)
qsort(nil)
qsort(add(x0, x1))
f_3(pair(x0, x1), x2, x3)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LT(s(X), s(Y)) → LT(X, Y)

R is empty.
The set Q consists of the following terms:

lt(0, s(x0))
lt(s(x0), 0)
lt(s(x0), s(x1))
append(nil, x0)
append(add(x0, x1), x2)
split(x0, nil)
split(x0, add(x1, x2))
f_1(pair(x0, x1), x2, x3, x4)
f_2(true, x0, x1, x2, x3, x4)
f_2(false, x0, x1, x2, x3, x4)
qsort(nil)
qsort(add(x0, x1))
f_3(pair(x0, x1), x2, x3)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

lt(0, s(x0))
lt(s(x0), 0)
lt(s(x0), s(x1))
append(nil, x0)
append(add(x0, x1), x2)
split(x0, nil)
split(x0, add(x1, x2))
f_1(pair(x0, x1), x2, x3, x4)
f_2(true, x0, x1, x2, x3, x4)
f_2(false, x0, x1, x2, x3, x4)
qsort(nil)
qsort(add(x0, x1))
f_3(pair(x0, x1), x2, x3)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LT(s(X), s(Y)) → LT(X, Y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

SPLIT(N, add(M, Y)) → SPLIT(N, Y)

The TRS R consists of the following rules:

lt(0, s(X)) → true
lt(s(X), 0) → false
lt(s(X), s(Y)) → lt(X, Y)
append(nil, Y) → Y
append(add(N, X), Y) → add(N, append(X, Y))
split(N, nil) → pair(nil, nil)
split(N, add(M, Y)) → f_1(split(N, Y), N, M, Y)
f_1(pair(X, Z), N, M, Y) → f_2(lt(N, M), N, M, Y, X, Z)
f_2(true, N, M, Y, X, Z) → pair(X, add(M, Z))
f_2(false, N, M, Y, X, Z) → pair(add(M, X), Z)
qsort(nil) → nil
qsort(add(N, X)) → f_3(split(N, X), N, X)
f_3(pair(Y, Z), N, X) → append(qsort(Y), add(X, qsort(Z)))

The set Q consists of the following terms:

lt(0, s(x0))
lt(s(x0), 0)
lt(s(x0), s(x1))
append(nil, x0)
append(add(x0, x1), x2)
split(x0, nil)
split(x0, add(x1, x2))
f_1(pair(x0, x1), x2, x3, x4)
f_2(true, x0, x1, x2, x3, x4)
f_2(false, x0, x1, x2, x3, x4)
qsort(nil)
qsort(add(x0, x1))
f_3(pair(x0, x1), x2, x3)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

SPLIT(N, add(M, Y)) → SPLIT(N, Y)

R is empty.
The set Q consists of the following terms:

lt(0, s(x0))
lt(s(x0), 0)
lt(s(x0), s(x1))
append(nil, x0)
append(add(x0, x1), x2)
split(x0, nil)
split(x0, add(x1, x2))
f_1(pair(x0, x1), x2, x3, x4)
f_2(true, x0, x1, x2, x3, x4)
f_2(false, x0, x1, x2, x3, x4)
qsort(nil)
qsort(add(x0, x1))
f_3(pair(x0, x1), x2, x3)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

lt(0, s(x0))
lt(s(x0), 0)
lt(s(x0), s(x1))
append(nil, x0)
append(add(x0, x1), x2)
split(x0, nil)
split(x0, add(x1, x2))
f_1(pair(x0, x1), x2, x3, x4)
f_2(true, x0, x1, x2, x3, x4)
f_2(false, x0, x1, x2, x3, x4)
qsort(nil)
qsort(add(x0, x1))
f_3(pair(x0, x1), x2, x3)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

SPLIT(N, add(M, Y)) → SPLIT(N, Y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

F_3(pair(Y, Z), N, X) → QSORT(Y)
F_3(pair(Y, Z), N, X) → QSORT(Z)
QSORT(add(N, X)) → F_3(split(N, X), N, X)

The TRS R consists of the following rules:

lt(0, s(X)) → true
lt(s(X), 0) → false
lt(s(X), s(Y)) → lt(X, Y)
append(nil, Y) → Y
append(add(N, X), Y) → add(N, append(X, Y))
split(N, nil) → pair(nil, nil)
split(N, add(M, Y)) → f_1(split(N, Y), N, M, Y)
f_1(pair(X, Z), N, M, Y) → f_2(lt(N, M), N, M, Y, X, Z)
f_2(true, N, M, Y, X, Z) → pair(X, add(M, Z))
f_2(false, N, M, Y, X, Z) → pair(add(M, X), Z)
qsort(nil) → nil
qsort(add(N, X)) → f_3(split(N, X), N, X)
f_3(pair(Y, Z), N, X) → append(qsort(Y), add(X, qsort(Z)))

The set Q consists of the following terms:

lt(0, s(x0))
lt(s(x0), 0)
lt(s(x0), s(x1))
append(nil, x0)
append(add(x0, x1), x2)
split(x0, nil)
split(x0, add(x1, x2))
f_1(pair(x0, x1), x2, x3, x4)
f_2(true, x0, x1, x2, x3, x4)
f_2(false, x0, x1, x2, x3, x4)
qsort(nil)
qsort(add(x0, x1))
f_3(pair(x0, x1), x2, x3)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

F_3(pair(Y, Z), N, X) → QSORT(Y)
F_3(pair(Y, Z), N, X) → QSORT(Z)
QSORT(add(N, X)) → F_3(split(N, X), N, X)

The TRS R consists of the following rules:

split(N, nil) → pair(nil, nil)
split(N, add(M, Y)) → f_1(split(N, Y), N, M, Y)
f_1(pair(X, Z), N, M, Y) → f_2(lt(N, M), N, M, Y, X, Z)
lt(0, s(X)) → true
lt(s(X), 0) → false
lt(s(X), s(Y)) → lt(X, Y)
f_2(true, N, M, Y, X, Z) → pair(X, add(M, Z))
f_2(false, N, M, Y, X, Z) → pair(add(M, X), Z)

The set Q consists of the following terms:

lt(0, s(x0))
lt(s(x0), 0)
lt(s(x0), s(x1))
append(nil, x0)
append(add(x0, x1), x2)
split(x0, nil)
split(x0, add(x1, x2))
f_1(pair(x0, x1), x2, x3, x4)
f_2(true, x0, x1, x2, x3, x4)
f_2(false, x0, x1, x2, x3, x4)
qsort(nil)
qsort(add(x0, x1))
f_3(pair(x0, x1), x2, x3)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

append(nil, x0)
append(add(x0, x1), x2)
qsort(nil)
qsort(add(x0, x1))
f_3(pair(x0, x1), x2, x3)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

F_3(pair(Y, Z), N, X) → QSORT(Y)
F_3(pair(Y, Z), N, X) → QSORT(Z)
QSORT(add(N, X)) → F_3(split(N, X), N, X)

The TRS R consists of the following rules:

split(N, nil) → pair(nil, nil)
split(N, add(M, Y)) → f_1(split(N, Y), N, M, Y)
f_1(pair(X, Z), N, M, Y) → f_2(lt(N, M), N, M, Y, X, Z)
lt(0, s(X)) → true
lt(s(X), 0) → false
lt(s(X), s(Y)) → lt(X, Y)
f_2(true, N, M, Y, X, Z) → pair(X, add(M, Z))
f_2(false, N, M, Y, X, Z) → pair(add(M, X), Z)

The set Q consists of the following terms:

lt(0, s(x0))
lt(s(x0), 0)
lt(s(x0), s(x1))
split(x0, nil)
split(x0, add(x1, x2))
f_1(pair(x0, x1), x2, x3, x4)
f_2(true, x0, x1, x2, x3, x4)
f_2(false, x0, x1, x2, x3, x4)

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


QSORT(add(N, X)) → F_3(split(N, X), N, X)
The remaining pairs can at least be oriented weakly.

F_3(pair(Y, Z), N, X) → QSORT(Y)
F_3(pair(Y, Z), N, X) → QSORT(Z)
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( add(x1, x2) ) =
/1\
\0/
+
/00\
\00/
·x1+
/10\
\00/
·x2

M( f_1(x1, ..., x4) ) =
/1\
\0/
+
/10\
\00/
·x1+
/00\
\00/
·x2+
/00\
\00/
·x3+
/00\
\00/
·x4

M( split(x1, x2) ) =
/0\
\0/
+
/00\
\01/
·x1+
/10\
\00/
·x2

M( true ) =
/0\
\0/

M( pair(x1, x2) ) =
/0\
\0/
+
/10\
\00/
·x1+
/10\
\00/
·x2

M( false ) =
/0\
\0/

M( s(x1) ) =
/0\
\0/
+
/00\
\00/
·x1

M( lt(x1, x2) ) =
/0\
\0/
+
/00\
\00/
·x1+
/00\
\00/
·x2

M( 0 ) =
/0\
\0/

M( nil ) =
/0\
\0/

M( f_2(x1, ..., x6) ) =
/1\
\0/
+
/00\
\00/
·x1+
/00\
\00/
·x2+
/00\
\00/
·x3+
/00\
\00/
·x4+
/10\
\00/
·x5+
/10\
\00/
·x6

Tuple symbols:
M( QSORT(x1) ) = 1+
[1,0]
·x1

M( F_3(x1, ..., x3) ) = 1+
[1,0]
·x1+
[0,0]
·x2+
[0,0]
·x3


Matrix type:
We used a basic matrix type which is not further parametrizeable.


As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:

f_2(true, N, M, Y, X, Z) → pair(X, add(M, Z))
f_2(false, N, M, Y, X, Z) → pair(add(M, X), Z)
f_1(pair(X, Z), N, M, Y) → f_2(lt(N, M), N, M, Y, X, Z)
split(N, add(M, Y)) → f_1(split(N, Y), N, M, Y)
split(N, nil) → pair(nil, nil)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
QDP
                            ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

F_3(pair(Y, Z), N, X) → QSORT(Y)
F_3(pair(Y, Z), N, X) → QSORT(Z)

The TRS R consists of the following rules:

split(N, nil) → pair(nil, nil)
split(N, add(M, Y)) → f_1(split(N, Y), N, M, Y)
f_1(pair(X, Z), N, M, Y) → f_2(lt(N, M), N, M, Y, X, Z)
lt(0, s(X)) → true
lt(s(X), 0) → false
lt(s(X), s(Y)) → lt(X, Y)
f_2(true, N, M, Y, X, Z) → pair(X, add(M, Z))
f_2(false, N, M, Y, X, Z) → pair(add(M, X), Z)

The set Q consists of the following terms:

lt(0, s(x0))
lt(s(x0), 0)
lt(s(x0), s(x1))
split(x0, nil)
split(x0, add(x1, x2))
f_1(pair(x0, x1), x2, x3, x4)
f_2(true, x0, x1, x2, x3, x4)
f_2(false, x0, x1, x2, x3, x4)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 0 SCCs with 2 less nodes.